High-resolution analysis of DNA copy number alterations in colorectal cancer by array-based comparative genomic hybridization.
نویسندگان
چکیده
Array-based comparative genomic hybridization (CGH) allows for the simultaneous examination of thousands of genomic loci at 1-2 Mb resolution. Copy number alterations detected by array-based CGH can aid in the identification and localization of cancer causing genes. Here we report the results of array-based CGH in a set of 125 primary colorectal tumors hybridized onto an array consisting of 2463 bacterial artificial chromosome clones. On average, 17.3% of the entire genome was altered in our samples (8.5 +/- 6.7% gained and 8.8 +/- 7.3% lost). Losses involving 8p, 17p, 18p or 18q occurred in 37, 46, 49 and 60% of cases, respectively. Gains involving 8q or 20q were observed 42 and 65% of the time, respectively. A transition from loss to gain occurred on chromosome 8 between 41 and 48 Mb, with 25% of cases demonstrating a gain of 8p11 (45-53 Mb). Chromosome 8 also contained four distinct loci demonstrating high-level amplifications, centering at 44.9, 60, 92.7 and 144.7 Mb. On 20q multiple high-level amplifications were observed, centering at 32.3, 37.8, 45.4, 54.7, 59.4 and 65 Mb. Few differences in DNA copy number alterations were associated with tumor stage, location, age and sex of the patient. Microsatellite stable and unstable (MSI-H) tumors differed significantly with respect to the frequency of alterations (20 versus 5%, respectively, P < 0.01). Interestingly, MSI-H tumors were also observed to have DNA copy number alterations, most commonly involving 8q. This high-resolution analysis of DNA copy number alterations in colorectal cancer by array-based CGH allowed for the identification of many small, previously uncharacterized, genomic regions, such as on chromosomes 8 and 20. Array-based CGH was also able to identify DNA copy number changes in MSI-H tumors.
منابع مشابه
Array-based Comparative Genomic Hybridization and Its Application to Cancer Genomes and Human Genetics
Microarray comparative genomic hybridization (CGH) has proven to be a specific, sensitive, and rapid technique, with considerable advantages compared to other methods used for analysis of DNA copy number changes. Array CGH allows for the mapping of genomic copy number alterations at the sub-microspecific level, thereby directly linking disease phenotypes to gene dosage alterations. The whole hu...
متن کاملBladder cancer stage and outcome by array-based comparative genomic hybridization.
PURPOSE Bladder carcinogenesis is believed to follow alternative pathways of disease progression driven by an accumulation of genetic alterations. The purpose of this study was to evaluate associations between measures of genomic instability and bladder cancer clinical phenotype. EXPERIMENTAL DESIGN Genome-wide copy number profiles were obtained for 98 bladder tumors of diverse stages (29 pT(...
متن کاملA probe-density-based analysis method for array CGH data: simulation, normalization and centralization
MOTIVATION Genomic instability is one of the fundamental factors in tumorigenesis and tumor progression. Many studies have shown that copy-number abnormalities at the DNA level are important in the pathogenesis of cancer. Array comparative genomic hybridization (aCGH), developed based on expression microarray technology, can reveal the chromosomal aberrations in segmental copies at a high resol...
متن کاملInduced G1 phase arrest of fast-dividing cells improves the quality of genomic profiles generated by array-CGH.
Genome-wide profiling of copy number alterations by array-based high resolution comparative genomic hybridization (array-CGH) is an important method to ensure the genomic integrity of cells in diverse conditions. We observed that the analysis of genomic profiles, in particular of fast-dividing murine leukemia cell lines, is challenging due to characteristic patterns oscillating around the array...
متن کاملGenomic microarrays in human genetic disease and cancer.
Alterations in the genome that lead to changes in DNA sequence copy number are a characteristic of solid tumors and are found in association with developmental abnormalities and/or mental retardation. Comparative genomic hybridization (CGH) can be used to detect and map these changes. Recent improvements in the resolution and sensitivity of CGH have been possible through implementation of micro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Carcinogenesis
دوره 25 8 شماره
صفحات -
تاریخ انتشار 2004